Synthetic Homology in Homotopy Type Theory

نویسنده

  • Robert Graham
چکیده

This paper defines homology in homotopy type theory, in the process stable homotopy groups are also defined. Previous research in synthetic homotopy theory is relied on, in particular the definition of cohomology. This work lays the foundation for a computer checked construction of homology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Higher Homotopy Groups of Pencils

We consider a large, convenient enough class of pencils on singular complex spaces. By introducing variation maps in homotopy, we prove in a synthetic manner a general Zariski-van Kampen type result for higher homotopy groups, which in homology is known as the “second Lefschetz theorem”.

متن کامل

The Seifert–van Kampen Theorem in Homotopy

Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...

متن کامل

The Seifert-van Kampen Theorem in Homotopy Type Theory

Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...

متن کامل

Homotopy Type Theory in Lean

We discuss the homotopy type theory library in the Lean proof assistant. The library is especially geared toward synthetic homotopy theory. Of particular interest is the use of just a few primitive notions of higher inductive types, namely quotients and truncations, and the use of cubical methods.

متن کامل

A The equivalence of the torus and the product of two circles in homotopy type theory

Homotopy type theory is a new branch of mathematics which merges insights from abstract homotopy theory and higher category theory with those of logic and type theory. It allows us to represent a variety of mathematical objects as basic type-theoretic constructions, higher inductive types. We present a proof that in homotopy type theory, the torus is equivalent to the product of two circles. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.01540  شماره 

صفحات  -

تاریخ انتشار 2017